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Abstract
Column-convex polygons were first counted by area several decades ago, and
the result was found to be a simple, rational, generating function. In this
work we generalize that result. Let a p-column polyomino be a polyomino
whose columns can have 1, 2, . . . , p connected components. Then column-
convex polygons are equivalent to 1-convex polyominoes. The area generating
function of even the simplest generalization, namely 2-column polyominoes, is
unlikely to be solvable. We therefore define two classes of polyominoes which
interpolate between column-convex polygons and 2-column polyominoes. We
derive the area generating functions of those two classes, using extensions of
existing algorithms. The growth constants of both classes are greater than the
growth constant of column-convex polyominoes. Rather tight lower bounds on
the growth constants complement a comprehensive asymptotic analysis.

PACS numbers: 05.50.+q, 05.70.Jk, 64.60.De, 75.10.−b

1. Introduction

The enumeration of polyominoes is a topic of great interest to chemists, physicists and
combinatorialists alike [20]. In chemical terms, any polyomino (with hexagonal cells) is
a possible benzenoid hydrocarbon. In combinatorics, polyominoes are of interest in their
own right because several polyomino models have mathematically appealing exact solutions.
Furthermore, they are also relevant to various problems of tilings [12]. Polyominoes are
extensively studied, in one form or another, in a wide variety of problems of great interest
to physicists. In particular, we note their investigation under the name lattice animals, in
the study of percolation [15, 17], in the graphical representation of the Ising model and
its extension to the Potts model, and in the study of the properties of branched polymers
[14, 21, 23].
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http://dx.doi.org/10.1088/1751-8113/42/48/485003
mailto:svjetlan.feretic@gradri.hr
mailto:tonyg@ms.unimelb.edu.au
http://stacks.iop.org/JPhysA/42/485003


J. Phys. A: Math. Theor. 42 (2009) 485003 S Feretić and A J Guttmann

They are also a representative of a class of problems that appear to be unsolvable—
notably the enumeration, by area or perimeter, of self-avoiding polygons, polyominoes and
other classes of graphs that are relevant to the Ising model and to percolation. The principal
line of attack on such problems is to simplify them until they are solvable, in the hope that the
essential physics is not destroyed in the process. That is the approach taken in this paper, where
the models proposed, while still solvable, are closer to the ultimate problem of full polyomino
enumeration than has previously been attained. Further, by use of Bousquet–Mélou’s [3] and
Svrtan’s [10] upgraded version of the Temperley methodology [22], we give the solution of
two problems previously out of reach due to their complexity. These developments may spur
further advances in this class of problem.

One frequently cited polyomino model is that of column-convex polygons3. We will
consider two versions of column-convex polygons: the first composed of square cells and the
second of hexagonal cells. Both versions have a rational area generating function. For the
version with square cells, the area generating function was found independently by Pólya [19]
in 1938 or 1969 and by Temperley [22] in 1956. That was perhaps the earliest major result
in polyomino enumeration. For the version with hexagonal cells, the area generating function
was found by Klarner in 1967 [18]. The growth constant of square-celled column-convex
polygons is μ = 3.205 569 . . . , while the growth constant of hexagonal-celled column-convex
polygons is μ = 3.863 130 . . . . (By the growth constant we mean the limit limn→∞ n

√
an, where

an denotes the number of n-celled elements in a given set of polyominoes.) In both cases the
area generating function is a simple pole, so that an ∼ const × λn.

There exist some models which are supersets of column-convex polygons and are still
solvable. These models are called m-convex polygons [16], prudent polygons [11], cheesy
polyominoes [6], polyominoes with cheesy blocks [7], column-subconvex polyominoes [9] and
simple-2-column polyominoes [8]. The former two models can be enumerated by perimeter
and area, whereas the latter four models have been enumerated only by area.

In this paper, we present two models: column-subconvex polyominoes and simple-p-
column polyominoes. In a column-subconvex polyomino, a column may have one or two
connected components. However, the gap within a two-component column must not be
greater than m cells in size, where m is a positive integer which we fix in advance. (If there
were no other requirements besides ‘a column may have one or two connected components’,
the model would still be too hard, i.e. not amenable to exact enumeration.) In a simple-p-
column polyomino, a column may have 1, 2, . . . , p connected components. The gaps within a
column can be of any size. However, columns with more than one connected components must
not be adjacent to one another. In this paper we discuss the simplest version, simple-2-column
polyominoes.

Column-subconvex polyominoes are somewhat easier to deal with when cells are
hexagons than when cells are squares. Thus, we computed the area generating function
for m = 1 column-subconvex polyominoes with hexagonal cells and for simple-2-column
polyominoes with square cells. Both of these generating functions are complicated q-series.
As mentioned above, we made use of Bousquet–Mélou’s [3] and Svrtan’s [10] upgraded
version of Temperley’s methodology [22].

The computations are rather long and intricate. Therefore, in this paper we only give an
outline of the proofs, though with enough detail that the methods may be applied by others to
new problems.

3 We distinguish between polygons and polyominoes in that the former cannot have internal holes. As a consequence,
the perimeter generating function for polygons has a non-zero radius of convergence, whereas for polyominoes the
radius of convergence is zero.
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In section 2, we define the models. In section 3, we give the formula for A1(q, x), a
generating function for m = 1 column-subconvex polyominoes, in which the variable q is
conjugate to the area and x is conjugate to the number of columns of the polyomino. A
truncated version of the proof is given in section 4. In section 5, we discuss the asymptotic
behaviour of A1(q, x), and give a tight lower bound on the growth constant, as well as a
very accurate estimate. In section 6, we give the formula for G(q,w), a generating function
for simple-2-column polyominoes on the square lattice, where once again the variable q is
conjugate to the area, while w is conjugate to the number of two-component columns of
the polyomino. For this model also we give an outline of the proof, which can be found in
section 7. In section 8, we discuss the asymptotic behaviour of G(q,w), including accurate
numerical estimates and bounds. In section 9 we conclude, outlining further work prompted
by our results.

Note that our solutions essentially give detailed information only about the area generating
function. The additional parameters x and w count columns of a certain type. Thus, we
cannot give perimeter–area phase diagrams which are relevant to the description of vesicle
collapse. Indeed, as we show in section 9, the perimeter generating function has zero radius
of convergence (as is the usual case for polyominoes), which precludes such a phase diagram
in its usual form.

2. Definitions of the models

There are three regular tilings of the Euclidean plane, namely the triangular tiling, the square
tiling and the hexagonal tiling. We adopt the convention that every square or hexagonal tile
has two horizontal edges. In a regular tiling, a tile is often referred to as a cell. A plane
figure P is a polyomino if P is a union of finitely many cells and the interior of P is connected.
Observe that, if a union of hexagonal cells is connected, then it possesses a connected interior
as well, as a connected union of hexagonal tiles must be connected through shared edges.
Topologically, a connected union of square cells may be connected only at a shared vertex.
Such unions are forbidden by the definition of polyominoes however.

Let P and Q be two polyominoes. We consider P and Q to be equal if and only if there
exists a translation f such that f (P ) = Q.

Given a polyomino P, it is useful to partition the cells of P according to their horizontal
projection. Each block of that partition is a column of P. Note that a column of a polyomino
is not necessarily a connected set. On the other hand, it may happen that every column of a
polyomino P is a connected set. In this case, the polyomino P is a column-convex polygon.
See figure 1.

By a 2-column polyomino, we mean a polyomino in which columns with three or more
connected components are not allowed. Thus, each column of a 2-column polyomino has
either one or two connected components.

A polyomino P is a level m column-subconvex polyomino if the following holds.

• P is a 2-column polyomino,
• if a column of P has two connected components, then the gap between the components

consists of at most m cells.

See figures 2 and 4a.
A simple-2-column polyomino is such a 2-column polyomino in which consecutive two-

component columns are not allowed. If c is a column of a simple-2-column polyomino,
and c is a (left or right) neighbour of a two-component column, then c must be a one-
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Figure 1. A column-convex polygon.

Figure 2. A level one column-subconvex polyomino.

component column. See figures 3 and 4b. Observe that, in a simple-2-column polyomino, a
two-component column can have a hole of any size.

3. The area generating function for level one column-subconvex polyominoes with
hexagonal cells

If a polyomino P is made up of n cells, we say that the area of P is n. Let T denote the set of
all level one column-subconvex polyominoes with hexagonal cells. In theorem 1 below, we
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Figure 3. A simple-2-column polyomino.

(a) (b)

Figure 4. (a) Level one column-subconvex polyominoes can have internal holes. (b) The same
holds for simple-2-column polyominoes.

state a formula for the generating function

A1(q, x) =
∑
P∈T

qarea of P · xnumber of columns of P .

5
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Theorem 1. The generating function A1(q, x) is given by

A1(q, x) =
∑3

n=1 numn∑6
n=1 denn

, (1)

where

num1 = (q − 8q2 + 28q3 − 56q4 + 70q5 − 56q6 + 28q7 − 8q8 + q9)x

+ (−4q3 + 24q4 − 58q5 + 72q6 − 48q7 + 16q8 − 2q9)x2

+ (5q5 − 12q6 + 12q7 − 6q8 + q9)x3,

num2 = [(−q + 5q2 − 9q3 + 5q4 + 5q5 − 9q6 + 5q7 − q8)x

+ (−4q3 + 18q4 − 32q5 + 28q6 − 12q7 + 2q8)x2

+ (5q5 − 7q6 + 5q7 − q8)x3]β,

num3 = (−2q4 + 8q5 − 12q6 + 8q7 − 2q8)x2δ,

den1 = 1 − 9q + 36q2 − 84q3 + 126q4 − 126q5 + 84q6 − 36q7 + 9q8 − q9

+ (−2q + 10q2 − 16q3 − 2q4 + 40q5 − 58q6 + 40q7 − 14q8 + 2q9)x

+ (7q3 − 36q4 + 69q5 − 60q6 + 21q7 − q9)x2

+ (−10q5 + 10q6 − 6q7 + 2q8)x3,

den2 = [(2q2 − 12q3 + 30q4 − 40q5 + 30q6 − 12q7 + 2q8)x

+ (4q3 − 22q4 + 46q5 − 46q6 + 22q7 − 4q8)x2

+ (−10q5 + 10q6 − 6q7 + 2q8)x3]α,

den3 = [−1 + 8q − 28q2 + 56q3 − 70q4 + 56q5 − 28q6 + 8q7 − q8

+ (2q − 6q2 − 2q3 + 30q4 − 50q5 + 38q6 − 14q7 + 2q8)x

+ (13q3 − 41q4 + 48q5 − 26q6 + 7q7 − q8)x2]β,

den4 = [(2q4 − 8q5 + 12q6 − 8q7 + 2q8)x2 + (−4q6 + 8q7 − 4q8)x3]γ,

den5 = [(6q4 − 22q5 + 30q6 − 18q7 + 4q8)x2 + (4q6 − 4q7)x3]δ,

den6 = [(2q4 − 6q5 + 6q6 − 2q7)x2 + (4q6 − 4q7)x3](αδ − βγ ),

α =
∞∑
i=1

xiq
i(i+5)

2

(1 − q)i
[∏i

k=1(1 − qk+1)
]2 ,

β =
∞∑
i=1

xiq
i(i+5)

2

(1 − q)i
[∏i−1

k=1(1 − qk+1)
]2

(1 − qi+1)
,

γ =
∞∑
i=1

xiq
i(i+5)

2
(

i
q

+ 2
∑i

j=1
qj

1−qj+1

)
(1 − q)i

[∏i
k=1(1 − qk+1)

]2 ,

δ =
∞∑
i=1

xiq
i(i+5)

2
(

i
q

+ 2
∑i−1

j=1
qj

1−qj+1 + qi

1−qi+1

)
(1 − q)i

[∏i−1
k=1(1 − qk+1)

]2
(1 − qi+1)

.

4. Proof of theorem 1

Recall that T denotes the set of all level one column-subconvex polyominoes.
When we build a column-subconvex polyomino from left to right, adding one column at

a time, the intermediate figures need not all be polyominoes, and therefore need not all be
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elements of T . We say that a figure P is an incomplete level one column-subconvex polyomino
if P itself is not an element of T , but P is a ‘left factor’ of an element of T . Note that, if P is an
incomplete level one column-subconvex polyomino, then the last (i.e. the rightmost) column
of P necessarily has a hole.

Let U denote the set of all incomplete level one column-subconvex polyominoes.
Let P be an element of T ∪ U and let P have at least two columns. Then we define

• the body of P to be all of P, except the rightmost column of P,
• the lower pivot cell of P to be the lower right neighbour of the lowest cell of the second

last column of P,
• the upper pivot cell of P to be the upper right neighbour of the highest cell of the second

last column of P.

We shall deal with the following generating functions:

A(q, x, t) =
∑
P∈T

qarea of P · xno. of columns of P · t the height of the last column of P ,

A1 = A(q, x, 1), B1 = ∂A

∂t
(q, x, 1),

C(q, x, u, v) =
∑
P∈U

qarea of P · xnumber of columns of P ·

·u
the height of the upper component

of the last column of P · v
the height of the lower component

of the last column of P
,

D(u) = C(q, x, u, 1), E(v) = C(q, x, 1, v), C1 = C(q, x, 1, 1).

In the above definitions, by the height of a holed column we mean the height of the upper
component plus the height of the lower component plus one. (One is the height of the hole.)

Now we are going to partition the set T into six subsets: Tα , Tβ , Tγ , Tδ , Tε and Tζ .
The parts of the series A that come from the sets Tα, . . . , Tζ will be denoted Aα, . . . , Aζ ,
respectively.

By Tα we denote the set of level one column-subconvex polyominoes which have only
one column. We have Aα = xqt

1−qt
.

By Tβ we denote the set of all P ∈ T \Tα which have the following properties: the body
of P lies in T , the last column of P has no hole, and the lower pivot cell of P is contained in
P. We have Aβ = xqt

(1−qt)2 · A1.
By Tγ we denote the set of all P ∈ T \Tα which have the following properties: the body

of P lies in T , the last column of P has no hole, and the lower pivot cell of P is not contained
in P. We have Aγ = xqt

1−qt
· B1.

By Tδ we denote the set of all P ∈ T \Tα which have the following properties: the body
of P lies in T and the last column of P has a hole. We have Aδ = xq2t3

(1−qt)2 · (B1 − A1).
By Tε we denote the set of all P ∈ T \Tα which have the following properties: the body

of P lies in U and the last column of P has no hole. We have Aε = xq2t2

(1−qt)2 · C1.
By Tζ we denote the set of all P ∈ T \Tα which have the following properties: the body

of P lies in U and the last column of P has a hole. We have Aζ = 2xq3t4

(1−qt)3 ·C1 − 2xq2t3

(1−qt)3 ·D(qt).
Inserting the expressions for Aα, . . . , Aζ into the equation A = Aα + · · · + Aζ , we obtain

A = xqt

1 − qt
+

xqt

(1 − qt)2
· A1 +

xqt

1 − qt
· B1 +

xq2t3

(1 − qt)2
· (B1 − A1)

+
xq2t2

(1 − qt)2
· C1 +

2xq3t4

(1 − qt)3
· C1 − 2xq2t3

(1 − qt)3
· D(qt). (2)
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Similarly, we partition the set U into five subsets: Uα , Uβ , Uγ , Uδ and Uε . The parts of the
series C that come from the sets Uα, . . . ,Uε are denoted as Cα, . . . , Cε , respectively.

By Uα we denote the set of incomplete level one column-subconvex polyominoes which
have only one column. We have Cα = xq2uv

(1−qu)(1−qv)
.

By Uβ we denote the set of all P ∈ U\Uα which have the following properties: the body
of P lies in T , and the hole of the last column of P coincides either with the lower pivot cell
of P or with the upper pivot cell of P. We have Cβ = 2xq2uv

(1−qu)(1−qv)
· A1.

By Uγ we denote the set of all P ∈ U\Uα which have the following properties: the body
of P lies in T , and the hole of the last column of P lies either below the lower pivot cell of P
or above the upper pivot cell of P. We have Cγ = xq2uv

(1−qu)2(1−qv)
· A1 + xq2uv

(1−qu)(1−qv)2 · A1.
By Uδ we denote the set of all P ∈ U\Uα which have the following properties: the body

of P lies in U , and the hole of the last column of P touches the hole of the second last column
of P. We have Cδ = 2xq2uv

(1−qu)(1−qv)
· C1.

By Uε we denote the set of all P ∈ U\Uα which have the following properties: the body
of P lies in U , and the hole of the last column of P does not touch the hole of the second last
column of P. We have Cε = xq2uv

(1−qu)(1−qv)2 · D(qv) + xq2uv

(1−qu)2(1−qv)
· D(qu).

Inserting the expressions for Cα, . . . , Cε into the equation C = Cα + · · · + Cε , we obtain
a functional equation for C. For our purposes, it will be enough to state the case v = 1 of that
functional equation. With the notation

F = 1 +
3 − 2q

1 − q
· A1 + 2C1 +

1

1 − q
· D(q), (3)

the case v = 1 of the functional equation for C reads

D(u) = xq2u

(1 − q)(1 − qu)2
· A1 +

xq2u

(1 − q)(1 − qu)
· F +

xq2u

(1 − q)(1 − qu)2
· D(qu). (4)

The iteration of (4) produces

D(u) =
{ ∞∑

i=1

xiq
i(i+3)

2 ui

(1 − q)i · [ ∏i
k=1(1 − qku)

]2

}
· A1

+

{ ∞∑
i=1

xiq
i(i+3)

2 ui

(1 − q)i · [ ∏i−1
k=1(1 − qku)

]2 · (1 − qiu)

}
· F. (5)

Then we set up a system of six linear equations in six unknowns: A1, B1, C1, D(q), D′(q)

and F. One of the six equations is (3), and the other five are obtained as follows:

• by setting t = 1 in (2),
• by differentiating (2) with respect to t and then setting t = 1,
• by setting u = 1 in (4),
• by setting u = q in (5),
• by differentiating (5) with respect to u and then setting u = q.

Once the linear system is solved, the proof of the theorem is complete.

5. The asymptotic analysis of A1(q, x)

We write [qn]f to denote the coefficient of qn in a power series f = f (q).

8
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From the solution above for A1(q, x), it is a straightforward matter to generate many
hundreds of terms of the series A1(q, 1), corresponding to the area generating function of
level one column-subconvex polyominoes. We have A1(q, 1) = q + 3q2 + 11q3 + 44q4 +
184q5 + 786q6 + 3391q7 + 14 683q8 + 63 619q9 + 275 506q10 + 1192 134q11 + 5154 794q12 +
22 278 047q13 + 96 250 859q14 + . . . . The solution is too complicated to permit an analytic
analysis of the asymptotics, so we resort to numerical methods. Fortunately, in this instance
our methods are able to achieve almost any required accuracy.

One of the simplest things to try is to look at the ratio of successive terms. In the presence
of an algebraic singularity, of the form F(x) = ∑

anx
n ∼ A(1 − μx)−γ , one has

rn = an/an−1 = μ[1 + (γ − 1)/n + o(1/n)].

Depending on the nature of the singularity, the correction term o(1/n) can usually be made
considerably sharper.

In the case of A1(q, 1), the ratios of successive terms are rapidly convergent,
enabling us to estimate that the dominant singularity is the reciprocal of μ =
4.319 139 243 729 788 226 294 125 186 813 818 984 941 600 81. The asymptotics are given
by

[qn]A1(q, 1) = λμn + o(ρ−n)

for any 1 < ρ < ρc, where μ is given above and λ = 0.122 428 100 456 122 243 205
023 911 505 973 633 306 171 383 . . . where we are confident that our estimates of μ and λ are
correct to all quoted digits. We have been unable to find a convincing representation of μ in
terms of the solution of any polynomial of degree less than 20. We also consider it likely that
λ is a rational function of μ, but have not been able to identify it.

Simple concatenation arguments, first used by Klarner [18], enable one to prove
that μ = limn→∞[qn]1/n = supn[qn]1/n. In this way, making use of [q250], we find
μ > 4.283 00 . . . , which is less than 1% below the best numerical estimate. Unfortunately,
finding upper bounds is much more difficult.

With the singularity being a simple pole, subdominant terms are exponentially small. We
can estimate the location of the first such singularity by the method of differential approximants
[20] and find a conjugate pair at q = q∗ = 0.399 878e±iπ/9.4864. Thus, ρc defined above is
given, approximately, by 0.399 878 × 4.3191 ≈ 1.727. Evidence of the phase factor can be
seen by calculating a ‘correction series’, with coefficients given by [qn]A1(q, 1)−λμn. These
coefficients have a periodicity in their sign pattern of about nine terms, corresponding to a
phase factor close to e±iπ/9, exactly as found.

We can also write A1(q, x) as
∑

n>0 A
(n)
1 (q)xn, where

A
(1)
1 (q) = q

1 − q
,

A
(2)
1 (q) = 2q2(1 − q + q3)

(1 − q)5(1 + q)
,

A
(3)
1 (q) = q3(4 + q + · · · − 2q7 − q8)

(1 − q)8(1 + q)2(1 + q + q2)
,

A
(4)
1 (q) = 2q4(4 + 6q + · · · − 4q12 − 2q13)

(1 − q)11(1 + q)3(1 + q + q2)2(1 + q2)
.

From this structure, we note that A
(n)
1 (q) is a rational function with denominators given by

powers of cyclotomic polynomials of steadily increasing degree. (Indeed, the increases are

9
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very systematic, so that one could readily conjecture the pattern). If, as seems likely, this
pattern persists, the zeros on the unit circle in the complex q plane will become dense. Such
a function cannot be differentiably finite in x [4]. Admittedly, this is a plausibility argument,
rather than a proof, that A1(q, 1) is not D-finite.

6. The area generating function for simple-2-column polyominoes with square cells

Let R denote the set of all simple-2-column polyominoes with square cells.
In theorem 2 below, we state a formula for the generating function

G(q,w) =
∑
P∈R

qarea of P · wnumber of two−component columns of P .

Theorem 2. The generating function G(q,w) is given by

G(q,w) = NUM

DEN
, (6)

where

NUM = (1 − q)4(α̃ + γ̃ + 2α̃η̃ − 2γ̃ ε̃) + q2w(1 − q)2(ι̃ + λ̃ − α̃κ̃ − α̃μ̃

+ β̃ ι̃ + β̃λ̃ − γ̃ κ̃ − γ̃ μ̃ + δ̃ι̃ + δ̃λ̃ − 2ε̃λ̃ + 2η̃ι̃ + 2α̃ζ̃ λ̃ − 2α̃η̃κ̃

− 2α̃η̃μ̃ + 2α̃θ̃ λ̃ − 2β̃ε̃λ̃ + 2β̃η̃ι̃ + 2γ̃ ε̃κ̃ + 2γ̃ ε̃μ̃ − 2γ̃ ζ̃ ι̃ − 2γ̃ θ̃ ι̃

− 2δ̃ε̃λ̃ + 2δ̃η̃ι̃) + 2q2w(1 − q2)(α̃λ̃ − γ̃ ι̃),

DEN = (1 − q)4(1 − β̃ + δ̃ − ε̃ + η̃ − α̃ζ̃ + α̃θ̃ + β̃ε̃ − β̃η̃ + γ̃ ζ̃ − γ̃ θ̃

− δ̃ε̃ + δ̃η̃) − 2(1 − q)3(γ̃ + α̃η̃ − γ̃ ε̃)

− 2q2w(1 − q)2(κ̃ − β̃μ̃ + δ̃κ̃ − ε̃κ̃ + ζ̃ ι̃ − ζ̃ λ̃ + η̃κ̃ − α̃ζ̃ μ̃ + α̃θ̃ κ̃

+ β̃ε̃μ̃ − β̃η̃μ̃ − β̃θ̃ ι̃ + β̃θ̃ λ̃ + γ̃ ζ̃ μ̃ − γ̃ θ̃ κ̃ − δ̃ε̃κ̃ + δ̃ζ̃ ι̃ − δ̃ζ̃ λ̃ + δ̃η̃κ̃)

− 4q2w(1 − q)(β̃λ̃ − γ̃ κ̃ + α̃ζ̃ λ̃ − α̃η̃κ̃ − β̃ε̃λ̃ + β̃η̃ι̃ + γ̃ ε̃κ̃ − γ̃ ζ̃ ι̃)

− 2q3w(1 − q)(ι̃ + α̃κ̃ − α̃μ̃ − β̃ ι̃ + δ̃ι̃ − ε̃λ̃ + η̃ι̃ − α̃ζ̃ λ̃ + α̃η̃κ̃

− α̃η̃μ̃ + α̃θ̃ λ̃ + β̃ε̃λ̃ − β̃η̃ι̃ − γ̃ ε̃κ̃ + γ̃ ε̃μ̃ + γ̃ ζ̃ ι̃ − γ̃ θ̃ ι̃ − δ̃ε̃λ̃ + δ̃η̃ι̃)

− 4q3w(α̃λ̃ − γ̃ ι̃),

β̃ =
∞∑
i=1

(−3)i−1qi2+2i−2wi−1

(1 − q)2i−2 · [∏i−1
k=1(1 − qk)

]4 · (1 − qi)
2
,

γ̃ =
∞∑
i=1

(−3)i−1qi2+4iwi

(1 − q)2i · [∏i−1
k=1(1 − qk)

]4 · (1 − qi)
3
,

ζ̃ =
∞∑
i=1

(−3)i−1qi2+2i−2wi−1

(1 − q)2i−2 · [∏i−1
k=1(1 − qk)

]4 · (1 − qi)
2

·
(

2i − 2 + 4 ·
i−1∑
k=1

qk

1 − qk
+

2qi

1 − qi

)
,

η̃ =
∞∑
i=1

(−3)i−1qi2+4iwi

(1 − q)2i · [∏i−1
k=1(1 − qk)

]4 · (1 − qi)
3

10
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·
(

2i + 4 ·
i−1∑
k=1

qk

1 − qk
+

3qi

1 − qi

)
,

κ̃ = 1

2
·

∞∑
i=1

(−3)i−1qi2+2i−2wi−1

(1 − q)2i−2 · [∏i−1
k=1(1 − qk)

]4 · (1 − qi)
2

·
[(

2i − 2 + 4 ·
i−1∑
k=1

qk

1 − qk
+

2qi

1 − qi

)2

− 2i + 2 + 4 ·
i−1∑
k=1

q2k

(1 − qk)2
+

2q2i

(1 − qi)2

]
,

λ̃ = 1

2
·

∞∑
i=1

(−3)i−1qi2+4iwi

(1 − q)2i · [∏i−1
k=1(1 − qk)

]4 · (1 − qi)
3

·
[(

2i + 4 ·
i−1∑
k=1

qk

1 − qk
+

3qi

1 − qi

)2

− 2i + 4 ·
i−1∑
k=1

q2k

(1 − qk)2
+

3q2i

(1 − qi)2

]
.

In the above formulae, it will be noticed that (a) some of the numbers have an overline, and
(b) no result is given for α̃, δ̃, ε̃, θ̃ , ι̃ and μ̃. This is both to save space and to highlight the
close similarity between certain quantities. For all the quantities defined above, the overlines
may be ignored. To obtain the formula for α̃ from the formula for β̃, replace 2 by 1. To obtain
the formula for δ̃ from the formula for γ̃ , replace 3 by 4 and change (−3)i−1 to (−3)i . To
obtain the formula for ε̃ from the formula for ζ̃ , and also to obtain the formula for ι̃ from the
formula for κ̃ , replace each of the 2’s by 1. To obtain the formula for θ̃ from the formula for
η̃, and also to obtain the formula for μ̃ from the formula for λ̃, replace each of the 3’s by 4
and change (−3)i−1 into (−3)i .

7. Proof of theorem 2

Let P be a simple-2-column polyomino and let P have at least two one-component columns.
Then we define the lower pivot cell of P to be the cell which is the right neighbour of the
bottom cell of the second-last (i.e. second-rightmost) among the one-component columns of
P. We also define the upper pivot cell of P to be the right neighbour of the top cell of the
second-last among the one-component columns of P.

Let P be a simple-2-column polyomino and let P have at least one two-component column.
Then we define the lower inner pivot cell of P to be the right neighbour of the top cell of
the lower component of the last among the two-component columns of P. We also define the
upper inner pivot cell of P to be the right neighbour of the bottom cell of the upper component
of the last among the two-component columns of P.

Observe that the lower pivot cell of a simple-2-column polyomino P is not necessarily
contained in P. The same holds for the upper pivot cell, the lower inner pivot cell and the
upper inner pivot cell of P.

Let S denote the set of those simple-2-column polyominoes whose last (i.e. rightmost)
column is a one-component column. It is convenient to first compute a generating function

11
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for the set S, and thence a generating function for all simple-2-column polyominoes. So, let

H(q, t, w) =
∑
P∈S

qarea of P · t
the height of the
last column of P · w

the number of
two-component columns of P

.

Next, we define three generating functions in two variables, q and w: let

H1 = H(q, 1, w), I1 =
⎧⎨
⎩

∂
[

H(q,t,w)

t

]
∂t

⎫⎬
⎭

with t=1

and J1 = 1

2
·
⎧⎨
⎩

∂2
[

H(q,t,w)

t

]
∂t2

⎫⎬
⎭

with t=1

.

The generating functions G(q,w) and H(q, t, w) are related by

G(q,w) = H1 +
q2w

(1 − q)2
· J1. (7)

Henceforth, the notation H(q, t, w) will be abbreviated as H(t).
In order to obtain a functional equation for the generating function H(t), we are going

to suitably partition the set S. The blocks of the partition will be denoted as Sα,Sβ, . . . ,Sμ,
and the parts of H(t) coming from these blocks will be denoted as Hα(t),Hβ(t), . . . , Hμ(t),
respectively.

First, we define Sα to be the set of those P ∈ S which have no other one-component
column than the last column. We have Hα(t) = qt

1−qt
+ q5t3w

(1−q)2(1−qt)3 .
Let Sβ be the set of those P ∈ S\Sα which have the following two properties: the

second-last column is a one-component column, and the last column contains the lower pivot
cell of P. We have Hβ(t) = qt

(1−qt)2 · H1.
Let Sγ be the set of those P ∈ S\Sα which have the following two properties: the second-

last column is a one-component column, and the last column does not contain the lower pivot
cell of P. We have Hγ (t) = qt

1−qt
· I1.

Thus, Sβ ∪Sγ is the set of those P ∈ S\Sα whose second-last column is a one-component
column.

Let Sδ be the set of those P ∈ S\Sα which have the following three properties: the
second-last column is a two-component column and the third-last column is (necessarily)
a one-component column, the lower component of the second-last column and the third-last
column have no edge in common, the lower pivot cell of P is contained in the upper component
of the second-last column. We have Hδ(t) = q5t3w

(1−q)3(1−qt)3 · H1.
Let Sε be the set of P ∈ S\Sα having the following three properties: the second-last

column is a two-component column and the third-last column is a one-component column,
the lower component of the second-last column and the third-last column have no edge in
common, and the lower pivot cell of P is contained in the hole of the second-last column. We
have Hε(t) = q5t3w

(1−q)2(1−qt)4 · H1 − q4t2w

(1−q)2(1−qt)4 · H(qt).
The definition of Sζ is obtained from the definition of Sδ by writing the word ‘upper’

where the definition of Sδ says ‘lower’, and by writing the word ‘lower’ where the definition
of Sδ says ‘upper’. We have Hζ (t) = Hδ(t).

The definition of Sη is obtained when the changes just described are made to the definition
of Sε (instead of to the definition of Sδ). We have Hη(t) = Hε(t).

Thus, Sδ ∪ Sε ∪ Sζ ∪ Sη is the set of those P ∈ S\Sα which, in addition to having a
two-component second-last column, also have the property that P \(the last column of P) is
not a polyomino.

Let Sθ be the set of P ∈ S\Sα which have the following three properties: the second-
last column is a two-component column and the third-last column is a one-component
column, each of the two components of the second-last column has at least one edge

12
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in common with the third-last column, and the last column also has at least one edge
in common with each of the two components of the second-last column. We have
Hθ(t) = q5t3w

(1−q)2(1−qt)3 · I1 − q5t3w

(1−q)2(1−qt)4 · H1 + q4t2w

(1−q)2(1−qt)4 · H(qt).
Let Sι be the set of P ∈ S\Sα which have the following four properties.

• The second-last column is a two-component column and the third-last column is a one-
component column,

• Each of the two components of the second-last column has at least one edge in common
with the third-last column,

• The last column has at least one edge in common with the lower component of the second-
last column, but does not have any edges in common with the upper component of the
second-last column,

• The last column does not contain the lower inner pivot cell of P.

We have Hι(t) = q4tw

(1−q)3(1−qt)
· J1.

Let Sκ be the set of P ∈ S\Sα having the following four properties.

• The second-last column is a two-component column and the third-last column is a one-
component column.

• Each of the two components of the second-last column has at least one edge in common
with the third-last column.

• The last column has at least one edge in common with the lower component of the second-
last column, but does not have any edges in common with the upper component of the
second-last column.

• The last column contains the lower inner pivot cell of P.

We have

Hκ(t) = q3tw

(1 − q)2(1 − qt)2
· J1 − q5t3w

(1 − q)2(1 − qt)3
· I1

+
q5t3w

(1 − q)2(1 − qt)4
· H1 − q4t2w

(1 − q)2(1 − qt)4
· H(qt).

The definition of Sλ is obtained from the definition of Sι by writing the word ‘upper’
where the definition of Sι says ‘lower’, and by writing the word ‘lower’ where the definition
of Sι says ‘upper’. We have Hλ(t) = Hι(t).

The definition of Sμ is obtained when the changes just described are made to the definition
of Sκ (instead of to the definition of Sι). We have Hμ(t) = Hκ(t).

Thus, Sθ ∪ Sι ∪ Sκ ∪ Sλ ∪ Sμ is the set of those P ∈ S\Sα which, in addition to having a
two-component second-last column, also have the property that P \(the last column of P) is a
polyomino. This means that Sδ ∪ Sε ∪ . . . ∪ Sμ is the set of all P ∈ S\Sα whose second-last
column is a two-component column.

The sets Sα,Sβ, . . . ,Sμ form a partition of the set S. We have H(t) = Hα(t) + Hβ(t) +
· · · + Hμ(t), and the expressions for Hα(t),Hβ(t), . . . , Hμ(t) are given above. Putting these
things together, we get a functional equation for H(t). It is convenient to write that functional
equation as

H(t) = qt

1 − qt
·
[

1 + I1 +
2q3w

(1 − q)3
· J1

]
+

qt

(1 − qt)2
·
[
H1 +

2q2w

(1 − q)2
· J1

]

+
q5t3w

(1 − q)2(1 − qt)3
·
(

1 +
2

1 − q
· H1 − I1

)
+

3q5t3w

(1 − q)2(1 − qt)4
· H1

− 3q4t2w

(1 − q)2(1 − qt)4
· H(qt). (8)
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We solved equation (8) by iteration, as is usually done in the upgraded Temperley method.
The iteration ended in

H(t) =
{ ∞∑

i=1

(−3)i−1qi2+2i−2t2i−1wi−1

(1 − q)2i−2 · [∏i−1
k=1(1 − qkt)

]4 · (1 − qit)

}
·
[

1 + I1 +
2q3w

(1 − q)3
· J1

]

+

{ ∞∑
i=1

(−3)i−1qi2+2i−2t2i−1wi−1

(1 − q)2i−2 · [∏i−1
k=1(1 − qkt)

]4 · (1 − qit)2

}
·
[
H1 +

2q2w

(1 − q)2
· J1

]

+

{ ∞∑
i=1

(−3)i−1qi2+4i t2i+1wi

(1 − q)2i · [∏i−1
k=1(1 − qkt)

]4 · (1 − qit)3

}
·
(

1 +
2

1 − q
· H1 − I1

)

−
{ ∞∑

i=1

(−3)iqi2+4i t2i+1wi

(1 − q)2i · [∏i
k=1(1 − qkt)

]4

}
· H1. (9)

From equation (9), we got a system of three linear equations in three unknowns: H1, I1

and J1. The first equation is just the case t = 1 of (9). The second equation is obtained by
dividing (9) by t, differentiating with respect to t and then setting t = 1. The third equation is
obtained by dividing (9) by t, differentiating twice with respect to t and then setting t = 1.

Once the linear system is solved, relation (7) tells us how to obtain the sought-after
generating function G. (To solve the linear system, we made use of the computer algebra
package Maple.)

7.1. A corollary to theorem 2

By setting w = 0, from theorem 2 we obtain the well-known result, discovered independently
by Temperley [22] and Pólya [19].

Corollary 1. The area generating function for column-convex polygons with square cells is
given by

G(q, 0) = q(1 − q)3

1 − 5q + 7q2 − 4q3
.

8. The asymptotic analysis of G(q, w)

Our analysis of the G(q,w) series parallels that given in section 5, as the singularities here
are also simple poles. Note that G(q, 0) is dominated by a simple pole at the smallest zero of
1 − 5q + 7q2 − 4q3, which is at q = qc = 0.311 957 055 278 . . . . From the solution above for
G(q,w), it is again a straightforward matter to generate many hundreds of terms of the series
G(q, 1), corresponding to the area generating function of simple-2-column polyominoes. We
have G(q, 1) = q + 2q2 + 6q3 + 19q4 + 63q5 + 216q6 + 758q7 + 2693q8 + 9608q9 + 34 269q10 +
121 946q11 + 432 701q12 + 1531 246q13 + . . . . The solution is too complicated to permit an
analytic analysis of the asymptotics, so we resort to numerical methods once again.

Writing G(q, 1) = ∑
bnq

n, we find b50/b49 = 3.522 019 842,
b100/b99 = 3.522 019 812 881 5885, b150/b149 = 3.522 019 812 881 584 830 067 67,
b200/b199 = 3.522 019 812 881 584 830 067 520 977 156 64 and b250/b249 =
3.522 019 812 881 584 830 067 520 977 156 868 436 53. It can be seen that each addi-
tional 50 terms add approximately 8 significant digits to the estimate of μ, the limiting value
of the ratios. Thus, the ratios are approaching μ when extrapolated against 1/n, with zero
slope, corresponding to a simple pole singularity, as might have been expected by analogy
with the behaviour of G(q, 0).
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We can now write the asymptotics much more precisely. We have that

[qn]G(q, 1) = λμn + o(ρ−n)

for any 1 < ρ < ρc, where μ = 3.522 019 812 881 584 830 067 520 977 156 868 436 53 . . . .

We will shortly provide an estimate of ρc. To calculate the amplitude λ, we simply
compute the sequence [qn]G(q, 1)/μn, which is also rapidly convergent, so that we may
write λ = 0.119 442 870 404 867 084 313 264 237 052 704 329 586 . . . where we are confident
that our estimates of μ and λ are correct to all quoted digits. By analogy with some other
solved polygon models [11] we hoped to identify μ as an algebraic number, but have been
unable to find a convincing representation in terms of the solution of any polynomial of degree
less than 20. We also consider it likely that λ is a rational function of μ, but have not been
able to identify it.

As in section 5, we can get a tight lower bound from μ = limn→∞[qn]1/n = supn[qn]1/n.

Making use of [q250] we find μ > 3.492 09 . . . , which is less than 1% below the best numerical
estimate.

With the singularity being a simple pole, subdominant terms are exponentially small. We
can estimate the location of the first such singularity by the method of differential approximants
[20] and find a conjugate pair of singularities at q = q∗ = 0.400e±iπ/8.88. Thus, ρc defined
above is given, approximately, by 0.400 × 3.522 ≈ 1.41. Evidence of the phase factor can be
seen by calculating a ‘correction series’, with coefficients given by [qn]G(q, 1) − λμn. These
coefficients have a periodicity in their sign pattern of about nine terms, corresponding to a
phase factor close to e±iπ/9, exactly as found.

We can also write G(q,w) as
∑

n Gn(q)wn, where

G0(q) = G(q, 0) = q(1 − q)3

�
,

with � = 1 − 5q + 7q2 − 4q3,

G1(q) = q5(2 + 3q3 − 4q4 + q5 + 2q6 − 7q7 + 4q8 + q9)

(1 − q2)3�2
,

G2(q) = q7(1 + 2q + · · · + 19q25 + q26)

(1 − q2)6(1 − q3)3�3
,

G3(q) = q12(9 + 36q + · · · + 32q41 + q42)

(1 − q2)6(1 − q)2(1 − q3)4(1 − q4)3�4
.

From this structure, we can make several remarks. Firstly, note that each term in the expansion
has a pole at the zero of �, whereas the sum of the terms has a pole closer to the origin at
q = 1/μ, as shown above. Secondly, note that �n+1Gn(q) is a rational function with
denominators given by powers of cyclotomic polynomials of steadily increasing degree. If,
as seems likely, this pattern persists, the zeros on the unit circle in the complex q plane will
become dense. Such a function cannot be differentiably finite in w [4]. While this does
not, in principle, exclude the possibility that G(q, 1) could be D-finite, it would have to be a
pathological function indeed that behaved in this way. Of course, pathological functions exist,
so our argument is just that—a plausibility argument, and not a proof.

9. Further work

Our next goal will be to find the area generating function for simple-2-column polyominoes
with hexagonal cells. That should not be difficult because we already have a method which
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works with square cells. It is usually possible to make such a method work when cells are
hexagons as well.

Unlike the simple, rational expression given above for the area generating function of
column-convex polygons, the area generating function of convex polygons is a sum of rational
functions of q-series [2]—not unlike our solution for the area generating function of simple-
2-column polyominoes, though not as complicated. For convex polygons, it is also possible
to find the generating function by perimeter. This was first given in [5] and was later obtained
independently in [13]. However, if one asks for the perimeter generating function of simple-
2-column polyominoes, it turns out that this has zero radius of convergence. We show this by
a very simple argument.

Consider a square of side 2n + 1 sites. This clearly has perimeter 8n + 4. Then construct
a simple-2-column polyomino by placing a single square (of perimeter 4) in any of the square
cells of the second column, except the top and bottom. This can be done in 2n − 1 ways.
Now repeat this for the fourth column, the sixth column, up to the 2nth column. We have
therefore placed n squares inside the large square, so the total perimeter of our object, which is
a simple-2-column polyomino, is now 12n + 4. The squares can be placed in (2n − 1)n ways.
Thus, if p2n denotes the number of simple-2-column polyominoes of perimeter 2n, we have
p12n+4 � (2n−1)n. The large n limit of 1

2n
log p2n diverges; hence, the radius of convergence is

zero. While this does not mean that the perimeter generating function is uninteresting, it would
be a whole new research project to study the nature of the singularity and its significance, and
will not be discussed further in this paper.

In terms of possible extensions of this work, it is probably possible to compute the
area generating function of simple-2-column2 polyominoes. Here, by a simple-2-column2

polyomino we mean a 2-column polyomino in which runs of two consecutive two-component
columns are allowed, but it is forbidden for three consecutive columns to each have two
connected components. One reason for doing this is that the growth factor μ is expected to
be greater than that for simple-2-column polyominoes, and may set the benchmark in this
regard. At present the situation is that for column-convex polygons the growth constant
is μ = 3.205 569 . . . , while for simple-2-column polyominoes the growth constant is
μ = 3.522 0198 . . . . For polyominoes the best lower bound [1] is μ � 3.980 137, which
is quite close to the best estimate [20] μ ≈ 4.062 5696. The polyomino model with a growth
constant closest to the actual value for polyominoes is a directed model called multi-directed
polyominoes [4] with a growth constant of μ ≈ 3.58. It would be interesting to compute the
area of simple-2-column2 polyominoes to see if they had a growth constant closer still to that for
polyominoes.

As regards column-subconvex polyominoes, the above argument may be repeated
mutatis mutandis to show that the perimeter generating function will also have zero
radius of convergence. The growth constant for this model, when enumerated by area, is
μ = 4.319 139 . . . , which may be compared to the best estimate for hexagonal polyominoes
[20] of μ ≈ 5.183 1453. The enumeration by area of the level 2 model is possible, but takes
a lot of efforts. We did perform that enumeration, which will be published subsequently, and
the formula for the area generating function of level two column-subconvex polyominoes is
available in [24]. The growth constant is found to increase to μ = 4.509 48 . . . in that case.
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[7] Feretić S Polyominoes with nearly convex columns: A model with semidirected blocks Math. Commun. at press

(arXiv:0910.4780)
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